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Abstract

Background—Left truncation occurs when subjects who otherwise meet entry criteria do not

remain observable for a later start of follow-up. We investigated left truncation in occupational

studies due to inclusion of workers hired before the start of follow-up in a simulation study.

Methods—Using Monte Carlo methods, we simulated null and positive associations between

exposure (work duration) and mortality for 500 datasets of 5000 subjects, assuming the absence

and presence of heterogeneity in susceptibility to disease and to the effect of exposure. We

examined incident hires (followed since hire) and left-truncated prevalent hires (those hired before

baseline and remained employed at baseline). We estimated the association ( ) as the mean slope

using Cox proportional hazards with a linear term for exposure, under scenarios with and without

susceptibility.

Results—With homogeneous susceptibility, there were no differences between incident and

prevalent hires. Introducing only disease susceptibility did not change results. However, with

heterogeneous susceptibility to the effect of exposure, downward bias was observed among

prevalent hires under both the true null and positive exposure-response scenarios. The bias

increased with time between hire and baseline (null:

 if hired <15, 15 to <30, and

≥30 years before baseline, respectively), coincident with a decreasing percentage of susceptible

subjects.

Conclusions: Prevalent hires induce downward bias in an occupational cohort. This occurs

because subjects who are less susceptible to the exposure remain exposed the longest, thereby

underestimating the association.
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Left truncation occurs in a cohort when subjects at risk prior to baseline do not remain

observable until the start of follow-up.1 Similar to other threats to study validity, this

potential bias may lead to incorrect conclusions about the presence of an association, as well

as its direction and magnitude. Left truncation has been discussed in various branches of

epidemiology, including studies of time to development of AIDS among HIV patients,2–4

the occurrence of spontaneous abortion or birth defects,5,6 and cancer survivors interviewed

some time after diagnosis.7 Our focus is the impact of left truncation on exposure-response

relationships in occupational epidemiology.

In occupational research, left truncation occurs when workers hired prior to the start of

follow-up (baseline) and still working at baseline are followed over time. The terms cross-

sectional-follow-up8 or cross-sectional cohort9 have been used to describe a cohort that

consists entirely of workers identified at one point in time (eg, the start of follow-up) and

followed forward. Because traditional cross-sectional studies (without follow-up) have been

found to over-represent long-term, healthier workers and underestimate disease

prevalence,10 results from such studies are generally interpreted with caution. Yet, the

literature offers little guidance on how to interpret follow-up studies in which workers were

identified in a cross-sectional manner. Data collected during a follow-up period might be

assumed to confer the full benefits of a cohort study. However, the manner in which subjects

were identified, even in a follow-up study, may influence the findings.

Occupational cohort studies often comprise a blend of “prevalent hires” (eg, the cross-

sectional cohort) and “incident hires.” The phrase incident hires indicates that workers were

hired during the follow-up period.11 Prevalent hires refers to those with a date of hire that

precedes study baseline and who are still working at the start of follow-up. The primary

concern about prevalent hires is that they may represent a healthy subset of all persons who

worked prior to follow-up. Mortality rates have been found to be lower among active

workers than workers who have left employment.12–15 Likewise, prevalent hires have been

found to have lower mortality than incident hires, although such contrasts are rarely

reported.8,9 Limited data suggest that, on average, prevalent hires have higher cumulative

exposure, are employed longer, and are younger at hire and older at death than incident

hires.11,16 Lower relative risks at a given exposure level have been reported for prevalent

hires compared with incident hires in studies of chloromethyl ethers and respiratory

cancer,16 silica and lung cancer,11 and cadmium and lung cancer.17 These findings suggest

that the distinction between prevalent and incident hires is nontrivial.

At the core of concerns about prevalent hires in occupational cohorts is the idea of

exchangeability.18 A worker population is a mixture of subjects with varying degrees of

susceptibility to the effect of exposure; exposure may have no effect on disease risk for

some while cause disease in others. Assume that, by design, subjects were enrolled in a

study only after they had survived for an extended period of time. If that time window was

sufficiently long to allow disease to occur before the start of follow-up, then subjects who

made it into follow-up may not be exchangeable with those who did not. Therefore, one of

the questions we examine in this simulation study is whether inherent variability in

susceptibility influences differences observed between incident and prevalent hires.
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We initially examined the issue of left-truncated occupational data in a cohort of Vermont

granite workers.11 We suspected that left truncation was operating in conjunction with the

healthy worker survivor effect, a bias arising when healthier workers accrue more exposure

than less healthy workers who take time off work, transfer to jobs with lower exposure, or

terminate employment.10 In the present simulation study, we focus solely on the impact of

left-truncated data and investigate its potential for bias in the absence of the healthy worker

survivor effect. We examine bias from left truncation in a simulation study of occupational

cohorts by allowing some subjects to have worked before the start of follow-up and

assuming heterogeneity with respect to susceptibility (to disease, to the effect of exposure,

or both). We compare exposure-response results for incident and prevalent hires for null and

positive exposure-disease associations.

METHODS

Generating the Data

We used a Monte Carlo simulation method based on one previously used for occupational

cohorts.12 We generated 500 datasets of cohorts containing 5000 subjects each (using R

2.8.1, www.r-project.org). Subjects were randomly assigned an age and date of entry into

the workforce. Age at entry was based on an exponential distribution with a mean of 27

years (minimum, 18 years), and date of hire was uniform across a 100-year hire period

(1900–2000). The subjects were also assigned a maximum possible employment duration

based on an exponential distribution with mean of 48 years. Subjects (as incident hires) were

followed from time of entry in the workforce until 2050. A subject’s work tenure would be

reduced from the maximum possible duration for the following reasons: end of follow-up,

death from competing risk or disease of interest, or employment after age 65.

To determine the occurrence of outcomes during follow-up, we generated the probability of

death from the cause of interest using a logistic function that depended on age, exposure

(using employment duration), and susceptibility, as follows:

Model (1)

where P was the probability of death from the cause of interest estimated in each person-

year. The exposure-response parameter, β1, was specified for a null (β1 = 0) and a positive

(β1 = 0.5) association, chosen to simulate a relative risk typically observed in occupational

studies. The background mortality rate was selected to yield enough cases to provide stable

parameter estimates (α0 = −0.5 for null association, −0.7 for positive association). We also

varied the association with age (β2 = 0, 1, 2) to examine the simulation under different

conditions. The mean estimates from the simulation were reproduced under these various

simulation conditions; thus only one age scenario for a null and one for a positive

association will be presented (null (β1 = 0): β0 = −5, β2 = 2; positive (β1 = 0.5): β0 = −7, β2 =

1).
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To introduce heterogeneity in disease susceptibility, we defined a binary term (β3) to

indicate susceptibility to disease. We also allowed for increased susceptibility in the

presence of exposure, which we will refer to as susceptibility to the effect of the exposure,

by adding an interaction term between exposure and disease susceptibility (β4). We

generated data without any variability in susceptibility (β3 = 0, β4 = 0). We also simulated

data with heterogeneity in disease susceptibility only (β3 = 0.5, β4 = 0), susceptibility only to

the effect of exposure (β3 = 0, β4 = 0.5), and both (β3 = 0.5, β4 = 0.5). For simulations with

susceptibility, we considered 2 scenarios: 25% of study subjects susceptible and 50% of

study subjects susceptible.

For each subject-year, we sampled from a binomial distribution with parameter P, to

determine whether a subject died of the cause of interest in that year. Similarly, we allowed

subjects to die of competing risks, which depended only on age (parameters for background

rate = −5.09, and age = 0.09, with age centered at 60 years). The length of follow-up for

each subject was the time from date of hire until death from cause of interest, death from

competing risk, or end of follow-up, whichever occurred first.

Modeling the Dose Response

The simulated data were modeled using Cox proportional hazards regression to examine the

dose response between exposure duration and mortality due to the disease of interest. The

Cox proportional hazards model is asymptotically equivalent to the pooled logistic

regression used to simulate the data because this pooled logistic regression uses person-

years as the unit of analysis, making the outcomes rare.19 In the Cox models, age served as

the time metric. A nested case-control sample of 20 controls per case matched on age was

also used to speed the computations. Hazard ratios (HRs) were modeled using a linear term

for the log of work duration as follows:

Model (2)

In modeling the dose response between the log of work duration and disease over 500

simulations, we estimate  and expect that it will be an unbiased estimate of β1 in model (1)

when there is no heterogeneity in susceptibility (β3 = β4 = 0). For models with heterogeneity,

the estimate of the effect of work duration  will not be an estimate of β1, but rather a

weighted estimate of the association between the log of work duration and disease among

subgroups with and without susceptibility. Computationally,  will be an estimate of the

average of β1 and β4 from model (1), weighted by the distribution of the person-time

contributed by susceptible and nonsusceptible subjects.

Inducing Left Truncation

The simulated data represent all workers hired any time between 1900 and 2000 and

followed up for mortality from 1900 to 2050. All of these subjects meet the definition of

incident hires because they were hired during follow-up, not before (eg, no left truncation).
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To create left-truncated data and examine the association among prevalent hires, we moved

the start of follow-up to a later time point, that is, 1950. By doing so, we can identify

prevalent hires as those who started working between 1900 and 1949, up to 50 years prior to

the start of follow-up, and were still working when follow-up began. We examined the

impact of left truncation (with and without susceptibility types) by comparing mean cohort

characteristics and dose-response estimates ( ) across the 500 cohorts for the incident hires

and the prevalent hires.

We further examined the impact of left truncation among prevalent hires by investigating the

relationship between bias and the length of time between hire date and baseline in 3 strata:

hired ≥30 years before baseline, hired 15 to <30 years before baseline, and hired within 15

years of baseline. For this stratified analysis, we simulated additional data to provide

sufficient power. The simulation conditions remained identical except that all 5000 subjects

in each cohort were hired between 1900 and 1949, making anyone still at work in 1950 a

prevalent hire.

RESULTS

First we address the reproducibility of the simulation for the exposure response for work

duration (β1) in incident hires only, without variability in susceptibility (β3 = 0, β4 = 0)

(Table 1). The mean and standard deviation (SD) of the  estimates across the 500

simulated cohorts were good estimates of the true parameters for a null (  [SD =

0.03]) and a positive association ( [SD = 0.05]).

As also shown in Table 1, we considered the impact of susceptibility on  for work

duration among incident hires. When only disease susceptibility was present (β3 = 0.5, β4 =

0), the estimated mean exposure-response parameter, , reproduced both the underlying

null and positive associations, regardless of the percentage of susceptible subjects included

in the population. Introducing only disease susceptibility, however, did increase the

background rate of disease, as observed in the increased number of cases.

Under the null, when susceptibility to the effect of exposure alone (β3 = 0, β4 = 0.5) or in

combination with susceptibility to disease (β3 = β4 = 0.5) was present,  was elevated above

the true value of β1 (Table 1) and the estimate increased as more susceptible subjects were

included, (eg, null, β3 = β4 = 0.5;  [SD = 0.03] with 25% of subjects susceptible and

 [SD = 0.03] with 50% of subjects susceptible). Note that  is a weighted average

of 2 types of subjects: nonsusceptible subjects, whose association between work duration

and disease mortality is simulated by β1 only, and susceptible subjects, whose association is

simulated by β1 and β4. When the percentage of susceptible subjects increases, the number

of cases increases. This same pattern was observed for a positive association.

Moving into comparisons between incident and prevalent hires, we restrict presentation to

scenarios without susceptibility (β3 = β4 = 0) and with susceptibility to both disease and to

the effect of exposure (β3 = β4 = 0.5). We do not present scenarios with disease
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susceptibility only (β3 = 0.5, β4 = 0) because conclusions about prevalent hires were the

same as the simulation without susceptibility. Likewise, we do not present scenarios with

susceptibility only to the effect of exposure (β3 = 0, β4 = 0.5), as conclusions were the same

as with susceptibility to both disease and to the effect of exposure.

In Table 2, mean cohort characteristics for incident and prevalent hires are compared, as

generated under the null without susceptibility. The size of the simulated cohorts was always

5000 subjects for incident hires, whereas the size of the subsets of prevalent hires varied,

with approximately 1200 subjects, on average. About one-third of incident and prevalent

hires became cases, on average, and case age at death was somewhat older for prevalent

hires. Mean length of follow-up and work duration were longer in prevalent than incident

hires. By definition, incident hires included all workers hired during follow-up. On the other

hand, prevalent hires had already worked 16.2 (SD = 0.3) years, on average, before follow-

up started.

Next, we compared mean  for incident and prevalent hires under various simulation

conditions (Table 3). Under the null without susceptibility, the exposure-response estimates

were not different. In the presence of susceptibility (either 25% or 50% of subjects

susceptible), differences emerged, with  lower in prevalent hires than incident hires.

Similar patterns were observed for a positive association; no differences between incident

and prevalent hires in the absence of susceptibility, and a lower  for prevalent hires than

incident hires in the presence of susceptibility.

Prevalent hires contain subjects who worked up to 50 years before the start of follow-up. To

further examine bias from prevalent hires, they were stratified by length of time worked

prior to follow-up: hired <15, 15 to <30, and ≥30 years before baseline. In Figure 1, we

observe that under the null, without susceptibility,  returned the null value, regardless of

how far in advance of baseline they had started working (  [SD = 0.10], 0.001

[0.27], and −0.02 [1.06] for worked <15, 15 to <30, and ≥30 years before baseline,

respectively). By contrast, when 25% of subjects were susceptible to the effect of exposure,

a negative bias appeared, becoming more pronounced with increasing years worked before

baseline (null, 25% susceptible:  [SD = 0.08], −0.08 [0.24], and −0.18 [0.98] for

worked <15, 15 to <30, and ≥30 years prior to baseline, respectively). This negative bias

was most evident when 50% of subjects were susceptible (null, 50% susceptible: 

[SD = 0.08], −0.08 [0.21], and −0.28 [0.92] for worked <15, 15 to <30, and ≥30 years prior

to baseline, respectively).

For a positive association without heterogeneous susceptibility, the simulated value (β1 =

0.5) was reproduced regardless of the length of time prevalent hires had worked prior to

follow-up (  [SD = 0.14], 0.53 [0.35], and 0.59 [1.23] for hired <15, 15 to <30, and

≥30 years before baseline, respectively) (Fig. 2). However, with heterogeneous

susceptibility, s are increasingly pulled downward with more time between hire and

baseline (  for 25% susceptible subjects = 0.51 [SD = 0.12], 0.32 [0.28], and 0.05 [1.11]
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for hired <15, 15 to <30, and ≥30 years prior to baseline, respectively). In fact, when 50% of

subjects were susceptible, the positive association was pulled below the null for those who

had worked longest before baseline (  [SD = 0.10], 0.33 [0.24], and −0.12 [0.86] for

worked <15, 15 to < 30, and ≥30 years prior to baseline, respectively).

To further examine the source of this downward bias when susceptibility was present, we

evaluated the percent of susceptible subjects in the prevalent hires strata (Table 4). Under

the null, with 25% susceptible subjects, the mean percentage of susceptible subjects among

prevalent hires overall dropped to 21%, indicating that not all susceptible subjects made it

into the follow-up period. Those hired more recently most closely resembled the original

percent of susceptible subjects, whereas those hired longer ago had a much lower percent of

susceptible subjects (eg, under the null, with 25% susceptible: 24.2%, 19.6%, and 12.0% of

the subjects were susceptible, on average, among subjects hired <15, 15 to <30, and ≥30

years before baseline, respectively). This pattern of a decreasing percentage of susceptible

subjects with greater time between hire and start of follow-up was evident for both null and

positive associations with 25% and 50% susceptible subjects.

DISCUSSION

Employer records usually form the basis for defining occupational cohorts. Because

employment records are generally maintained for all active workers, study populations

typically include presently active workers as well as new employees hired during the

subsequent follow-up period. Results from our simulation study are relevant to cohorts that

comprise prevalent hires as a part or all of the study population.

Workers hired before the start of follow-up, ie, prevalent hires, can introduce downward bias

in exposure-response estimates for null and positive associations. Moreover, this bias

increases with time between hire and start of follow-up, driven by a change in the

composition of surviving subjects over time; those more susceptible to the effect of exposure

are less likely to remain at work until the later start of follow-up. Those who do remain at

work are less diverse and comprise a larger proportion of nonsusceptibles than their

counterparts who are no longer followed. This result, however, was observed only when we

explicitly incorporated heterogeneity in susceptibility to the effect of exposure.

Susceptibility to the effect of disease alone did not influence bias due to prevalent hires (data

not shown). Because people do in fact vary in their biologic response to many exposures—

due to genetic or epigenetic factors, early life events, and other unmeasured characteristics

—the assumption of variable susceptibility is more plausible than homogeneous

responsiveness.

Our simulation model for disease risk included independent terms for susceptibility to

disease, susceptibility to the effect of exposure, and an interaction between disease

susceptibility and exposure with a positive coefficient. This is only one of the possible

scenarios. The epidemiology literature20,21 describes many types of interactions. Although

how the bias changes over time may differ from the scenarios presented here, we suspect

that the conclusion would be the same: the exposure-response relationship changes over

time because the pattern of heterogeneity in the population at risk changes over time.
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In our simulation study, analysis restricted to recent prevalent hires (hired within 15 years of

baseline) produced unbiased results. We expect this to hold for diseases with similar

induction time from first exposure to diagnosis; the period would be shorter for diseases

with a shorter induction time. A sensitivity analysis designed to vary the eligibility criteria

(based on time hired prior to baseline) might provide information about the bounds of the

bias due to the presence of left-truncated data.11 For studies that include a mixture of

prevalent and incident hires, we advise against controlling for hire status as a confounder

because doing so would provide a pooled estimate of the average exposure response for the

incident and prevalent hires. Instead, it would be preferable to directly address the bias

induced by prevalent hires.

Next, we describe several analytic approaches that may be useful for addressing prevalent-

hire bias. We describe them here but more direct evaluation of these methods is needed. The

first involves partitioning exposure for prevalent hires into 2 time windows: before the start

of follow-up (a baseline constant) and during the follow-up period (time-varying) (J Robins,

personal communication, 2008). This approach models disease as a function of exposure

accumulated during the follow-up period, adjusting for cumulative exposure prior to start of

follow-up (coded as zero for incident hires). However, the same cumulative exposure can be

reached through various combinations of duration and intensity. As we have seen in this

analysis, bias from prevalent hires is greater with longer duration employed before baseline.

Therefore, partitioning exposure alone may not be sufficient, but is perhaps best done in

conjunction with a method that addresses the change in composition of subjects over time.

There are potentially several ways of addressing the surviving subjects over time. First, if

the proportional hazards assumption is not satisfied, an extended Cox model may be used to

handle time-dependent effects.22 This method has been recommended for left truncation in

studies of cancer survivors where cases were interviewed some time after diagnosis and then

followed.7 Alternatively, prevalent hires could be handled with delayed entry using time

since hire as the study timeline.23–25 This approach involves a likelihood function

conditional on having stayed at work until a particular time. Incident hires contribute

person-time to risk sets beginning at hire. For each prevalent hire, the starting time is the

time between hire and start of follow-up (eg, delayed entry). Thus, prevalent hires will begin

to contribute person-time to the same risk set as incident hires who survived until the same

amount of time after hire. Finally, because the composition of subjects, and thus the

association of interest, may change over time, a single summary hazard ratio may be

inappropriate. An alternative is to present a series of hazard ratios by increasing categories

of time since hire. As recently described by Hernán,26 standard structural accelerated failure

time models for survival ratios or the periodic estimation of association over the follow-up

period may be preferable to a single summary hazard ratio.

Studies comprising only incident hires (inception cohorts) also have limitations. First, the

survivor issue driving prevalent-hire bias operates in incident hires as well. That is, as time

in follow-up increases, more susceptible subjects will be more likely to experience the

disease and experience it earlier than the less susceptible. Thus, the methods described

earlier might well be applied in long-term studies of incident hires as well. Moreover,

restricting a study to incident hires may reduce statistical power due to a decrease in the
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range of exposure or a reduction in the age range at baseline, with fewer subjects eligible for

age-related diseases. In addition, the length of follow-up may be insufficient for a disease

with longer latency if all subjects enter follow-up when hired.10 Although a prospective

study of an inception cohort may sometimes be feasible, a retrospective inception cohort of

all workers hired after the start of follow-up may be more practical.

Both the healthy worker survivor effect and depletion of susceptible individuals have been

offered as explanations for the frequently observed attenuation of exposure response at the

highest levels of workplace exposures.27 Recall that healthy-worker-survivor-effect bias

occurs if less healthy workers transfer to jobs with lower exposure, take time off, or leave

work altogether prior to the event of interest (eg, death). Thus, susceptibility is also inherent

in the healthy worker survivor effect. In fact, with the healthy worker survivor effect,

workers with greater susceptibility to the exposure effect deliberately intervene in their

exposure trajectories in response to an early health event or symptom. Thus it can be

considered a problem of a time-varying confounder (eg, underlying health status), also

affected by prior exposure. Although standard epidemiologic risk models cannot address a

confounder on the causal pathway, causal models, in particular, g-estimation of structural

nested accelerated failure time models, can be applied to such situations to address healthy-

worker-survivor-effect bias.28 It is important to note that the prevalent-hire bias we observed

in this study was operating in the absence of the healthy worker survivor effect; we did not

simulate workers with exposure-related susceptibility taking time off work, thereby reducing

their employment duration. Moreover, left truncation in the absence of the healthy worker

survivor effect does not involve workers changing their subsequent exposure on the basis of

their health status, ie, the bias is not caused by a time-varying confounder on the causal

pathway. Thus, although susceptibility is involved in both biases, the mechanisms differ,

and alternative methods (such as those described earlier) are needed to reduce bias from

prevalent hires alone.

In conclusion, this simulation has shown that bias is induced by including prevalent hires

with heterogeneity in their susceptibility to the effect of exposure. Moreover, the bias

increased with time employed prior to start of follow-up, lending support to the presumption

that subjects who survive longer are different from those who do not. This lack of

exchangeability is magnified by including prevalent hires, but also exists within an incident-

hire cohort with long-term follow-up, and can cause bias even in the absence of the healthy

worker survivor effect. Descriptions of the published cohorts should be sufficient to

determine the mixture of prevalent and incident hires. In addition, alternative analytic

strategies should be considered to address the potential bias due to differential survival.
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FIGURE 1.

Box plots of  estimates across 500 simulated cohorts under the null for prevalent hires,

subjects who worked up to 50 years before the start of follow-up and still working when

follow-up began. Prevalent hires were divided into strata: hired <15, 15 to <30, and ≥30

years before start of follow-up. Horizontal line indicates the simulated null value.

Simulating model: logit P = β0 + = β1(ln work duration) + β2 (ln age) = β3 (disease

susceptible) = β4 (disease susceptible*ln work duration), with values set to β0 = −5, β1 = 0,

β2 = 2, and β3 = β4 = 0 for no susceptibility or = 0.5 with variable susceptibility (and either

25% or 50% of cohort susceptible). Data analysis model: 

with age as the timeline.
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FIGURE 2.

Box plots of  estimates across 500 simulated cohorts for a positive association in prevalent

hires, subjects who worked up to 50 years before the start of follow-up and still working

when follow-up began. Prevalent hires were divided into strata: hired < 15, 15 to <30, and

≥30 years before start of follow-up. Horizontal line indicates the simulated positive value of

β1 = 0.5. Simulating model: logit P = β0 − β1(ln work duration) + β2(ln age) + β3(disease

susceptible) + β4(disease susceptible*ln work duration), with values set to β0 = −7, β1 = 0.5,

β2 = 1, and β3 = β4 = 0 for no susceptibility or = 0.5 with variable susceptibility (and either

25% or 50% of cohort susceptible). Data analysis model: 

with age as the timeline.
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TABLE 2

Comparison of Mean Cohort Characteristics for Incident and Prevalent Hires From 500 Simulated Cohorts

Under the Null With No Variability in Susceptibilitya

Incident Hiresb Prevalent Hiresc

Cohort size

 No. (SD) 5000 (0) 1257.8 (31.7)

Cases

 No. (%) 1714.8 (34.3) 414.2 (32.9)

 Case age at death (years); mean (SD) 65.3 (0.4) 69.8 (0.8)

Length of follow-up (years); mean (SD) 48.5 (0.3) 52.8 (0.5)

Work duration (years); mean (SD) 25.2 (0.2) 32.3 (0.3)

Time worked before baseline (years); mean (SD) 0 (0) 16.2 (0.3)

a
500 simulations contained 5000 subjects each. Simulating model: logit P = β0 + β1 (ln work duration) + β2 (ln age) + β3 (disease susceptible) +

β4 (disease susceptible*ln work duration). Simulation conditions were set to β0 = −5, β1 = 0, β2 = 2, β3 = β4 = 0 (models had no heterogeneity in

susceptibility).

b
Incident hire subjects started working 1900–2000 and study follow-up was 1900–2050 (eg, hired during follow-up).

c
Prevalent hire subjects started working 1900–1949 and were still at work in 1950 when follow-up began and ran through 2050 (eg, hired prior to

follow-up and still at work when follow-up began).
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TABLE 3

Comparison of Incident Hires and Prevalent Hires: Mean Coefficient Estimation From 500 Simulations, With

and Without Variability in Susceptibility of Subjects

Simulation Conditionsa

Incident Hiresb  (SD) Prevalent Hirec  (SD)ln work Duration % Subjects Susceptible

Nulld (β1 = 0) 0 0.02 (0.03) −0.01 (0.13)

25 0.10 (0.03) 0.03 (0.11)

50 0.18 (0.03) 0.09 (0.10)

Positivee (β1 = 0.5) 0 0.51 (0.05) 0.52 (0.19)

25 0.57 (0.04) 0.49 (0.14)

50 0.65 (0.04) 0.55 (0.11)

a
500 cohorts simulating with: logit P = β0 + β1 (ln work duration) + β2(ln age) + β3(disease susceptible) + β4 (disease susceptible*ln work

duration). Data analysis model:  with age as the timeline.

b
Incident hires were hired during the follow-up period.

c
Prevalent hires were hired up to 50 years prior to the start of follow-up and were still working when follow-up began.

d
Simulation conditions for null models: β0 = −5, β1 = 0, β2 = 2, and β3 = β4 = 0 for no susceptibility or = 0.5 with variable susceptibility (and

there were either 25% or 50% of cohort susceptible).

e
Simulation conditions for positive models: β0 = −7, β1 = 0.5, β2 = 1, and β 3 = β4 = 0 for no susceptibility or = 0.5 with variable susceptibility

(and there were either 25% or 50% of cohort susceptible).
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